Nigella sativa (black seed) prevents covid-induced vascular damage, scientists conclude in published paper indexed by NIH


Image: Nigella sativa (black seed) prevents covid-induced vascular damage, scientists conclude in published paper indexed by NIH
  • Save

(Natural News)
New research published in the journal Vascular Pharmacology shows that Nigella sativa, also known as black seed or black cumin, binds to ACE2 in the lungs, effectively stopping the Wuhan coronavirus (Covid-19) from inducing inflammation and vascular damage.

Researchers out of India investigated the effects of nigellidine, an indazole alkaloid of black seed, using molecular docking for binding to different angiotensin-binding proteins, as well as the Chinese Virus spike glycoprotein. They found that nigellidine “strongly binds” to the Chinese Virus spike protein at what is known as the hinge region or active site opening, which may in turn hamper its binding to the nCoV2-ACE2 surface.

“Nigellidine effectively binds in the Angiotensin-II binding site / entry pocket,” the study explains. “Nigellidine showed strong binding to mono / multi-meric ACE1.”

This process of ACE blocking could, the study goes on to suggest, restore angiotensin levels and restrict vasoturbulence in Chinese Virus patients, while the receptor blocking could help to stop resulting inflammation and vascular impairment.

“Nigellidine may slow down the vaso-fluctuations due to Angiotensin deregulations in Covid patients,” the paper further explains.

“Angiotensin II-ACE2 binding (ACE-value -294.81) is more favorable than nigellidine-ACE2. Conversely, nigellidine-ACE1 binding-energy / Ki is lower than nigellidine-ACE2 values indicating a balanced-state between constriction-dilatation.”

Nigellidine also binds to the viral spike proteins, which when taken by Chinese Virus patients, and especially those who fall in the elderly category, could greatly reduce their risk of suffering complications or death.

Nigellidine impairs SARS-CoV-2 infection, “cytokine storm” through numerous mechanisms

In a related study that was published last year in the journal Europe PMC, researchers learned that nigellidine inhibits the Chinese Virus infection in several other ways.

It was discovered early on in the “pandemic” that many of those who tested “positive” for the virus were suffering associated “cytokine storms,” in which their immune systems were over-responding and causing more damage, or even death.

Nigellidine was then studied and discovered to possess certain properties that inhibit cytokine storms, as well as impede the SARS CoV-2 virus from causing infection. It is also hepato- and reno-protective, meaning it protects against liver damage.

Beyond this, nigellidine was determined to possess unique immunomodulatory and anti-inflammatory characteristics, as well as antioxidant potential strong enough to inhibit important proteins associated with the Chinese Virus.

In their quest to uncover possible “drug” candidates to protect patients against hyper-inflammation and other associated problems, the researchers learned that nigellidine – and more than likely other black seed constituents – helps tremendously with preventing negative side effects.

Along with nigellicine, nigellidine is found in the seed coat of Nigella sativa. Both of these constituents in their sulfated forms are extremely bioavailable, and along with thymoquinone and dithymoquinone, two other black seed components, they show strong antioxidant, antibacterial, anti-hypertensive, anti-inflammatory and immunomodulatory effects.

Black seed extracts have been shown in other experiments to decrease oxidative stress, effectively lowering the risk of inflammation-related diseases. We now know that this includes the Wuhan coronavirus (Covid-19).

Black seed is also recognized as a metabolic protector, helping to improve lipid and blood sugar levels.

“Most importantly, in SARS CoV-2 infection ACE-2 mediated impairment of aldosterone system may be repaired by,” the study further explains, providing relevant information to the current “pandemic.”

“Vasorelaxant and anti-hypertensive function of [black seed] helps in the modulation of renin angiotensin system (RAS) or the diuretic activity, which is one of the major targets of COVID. It might have great protective role during post infective secondary disorder of the peripheral vasculature namely cardiac and renal systems. In most of the instances patients die due to this organ dysfunction/failure in COVID-19 infection.”

By quelling inflammation, black seed could save lives from covid

Laboratory studies have found that intake of Nigella sativa significantly improves the parameters for hyperglycemia and diabetes control, as well as glycated hemoglobin and insulin resistance.

Based on this, experts believe that nigellidine specifically could play an important role in fighting the Chinese Virus by “docking” to the proteins and inflammatory molecules that can cause a cytokine storm – mainly TNF-? receptors such as TNFR1, TNFR2 and IL1R.

“In the experimental rat model the source of this drug Nigella sativa; black cumin seed extracts were tested for its role on antioxidant, hepatic and renal status,” the paper states. “This work will help in the urgent therapeutic intervention against COVID-19 global pandemic.”

“In the current study, we have decisively shown by molecular modeling that nigellidine can bind in the active sites of several important proteins of SARS CoV 2, several host receptors specific for SARS CoV-2 induced inflammatory markers IL1, IL6, TNF-?. Moreover, the extract from black cumin seed has been shown in experimental rat to be highly antioxidative, hepato- and reno-protective. Further studies are necessary to verify the potential effects of nigellidine in in vivo laboratory experimental animal model.”

Sources for this article include:

pubmed.ncbi.nlm.nih.gov

EuropePMC.org

NaturalNews.com

Source material can be found at this site.

In Case You Missed It:  Explosive! Public health data: 80% of COVID-19 deaths in August were vaccinated people
Posted in Freedoms and tagged , , .